Effects of fires on carbon cycling in North American boreal peatlands

نویسندگان

  • S. C. Zoltai
  • W. J. de Groot
چکیده

Boreal peatlands occupy about 1.14 x 106 km2 in North America. Fires can spread into peatlands, burning the biomass, and if moisture conditions permit, burning into the surface peat. Charred layers in peat sections reveal that historically bogs in the subhumid continental regions and permafrost peatlands of the subarctic regions have been the most susceptible to fires. Fire return periods were estimated from the numbers and ages of the charred peat layers. Based on average moisture conditions of the surface, about 0.5% of the peatlands (6420 km2) can be expected to burn annually, but the surface peat layer is expected to burn only in a small portion of this area (1160 km2). Carbon losses from aboveground combustion, in the form of CO2, CO, CH4, and nonmethane hydrocarbons, are the highest in forested swamps at 2.03 Tg C⋅year–1. Carbon losses due to combustion of surface peat is the highest in the driest peatlands (e.g., raised bogs underlain by permafrost) at 5.82 Tg C⋅year–1. The total estimated carbon release due to aboveground combustion is 2.92 Tg C⋅year–1 and due to belowground peat combustion is 6.72 Tg C⋅year–1. These estimates of direct carbon emissions to the atmosphere due to wildfires suggest a globally significant, but relatively small source in contrast with emissions from wildfires in uplands. The effects of a possible climate change are expected to be most prominent in the continental and northern parts of North America. A lower water table would result in increased CO2 but decreased CH4 emissions from the peatlands. A drier climate may mean increased fire frequency and intensity, resulting in more fires in peatlands and an increased probability of the fires consuming

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon, Trace Gas, and Particulate Emissions from Wildfires in the Boreal Regions of North America

Large wildfires have a considerable impact on the atmospheric concentrations of CO2, CO, O3, NOx, and CH4 across North America. Carbon releases can be as high as 4 to 8 kg C-m per fire event. These emissions significantly affect concentrations far downwind. With funding from NASA, the Joint Fire Science Program, NSF, and the Canadian Government, US and Canadian researchers have been developing ...

متن کامل

Emissions of carbon dioxide, carbon monoxide, and methane from boreal forest fires in 1998

[1] The global boreal forest region experienced some 17.9 million ha of fire in 1998, which could be the highest level of the decade. Through the analysis of fire statistics from North America and satellite data from Russia, semimonthly estimates of area burned for five different regions in the boreal forest were generated and used to estimate total carbon release and CO2, CO, and CH4 emissions...

متن کامل

6 . Boreal Forest

The boreal forest biome occupies 13 x I06km1. It comprises approximately 25% of the world's forest land (Olson et al. 1983; Apps et al. 1993) and includes 2.6 x 106km1 of peatlands (Gorham 1991). Changes in the extent or functioning of the boreal forest wuld substantially modify global climate through (1) release of its large stocks of soil carbon (Post et al. Boreal forests have also been impl...

متن کامل

Short-term carbon dioxide exchange and environmental factors in a boreal fen

Northern peatlands are important contributors to the global carbon cycle. In cold and moist climatic conditions, boreal peatlands have sequestered large amounts of atmospheric carbon during the past few thousand years (GORHAM 1991). The carbon balance in mires depends on the rates of photosynthesis and respiration which are affected by both the long-term and the short-term variations in environ...

متن کامل

Meeting the challenge of mapping peatlands with remotely sensed data

Boreal peatlands play a major role in carbon and water cycling and other global environmental processes but understanding this role is constrained by inconsistent representation of peatlands on, or omission from, many global land cover maps. The comparison of several widely used global and continental-scale databases on peat-5 land distribution with a detailed map for the St. Petersburg region ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998